
AD-AI70 837 F9OMN9fl 2r H;' u rI TRZlR 1PPL ATj%TO /

UN4CLASSIFIED M E A /G ML

END-2 , - W M -L7M

JJJJJI:mo 11111J~2.2
.8

MIRW P~L SOLUTION lkAIK A .N

CV) Formal Models of Hardware
and Their Application to VLSI Design Automation

00

Final Report

Alice C. Parker

December, 1986

U.S. Army Research Office

Contract No. DAAG29-83-k-0147

Department of Electrical Engineering-Systems

University of Southern California

Los Angeles, CA 90089-0781

Approved for Public Release;

Distribution Unlimited.

The view, opinions, and/or findings contained in this report are those of the author(s)

and should not be construed as an official department of the army position, policy, or

decision, unless so designated by other documentation.

I

- - r m i_ ,,, , , ,, m~ ,,,.,, ,.,-,n,,a8 7 -

Unclassified PG t-
SEe7URITY CLASSIFICATION OF TI AEA

REPORT DOCUMENTATION PAGE
aREPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2.6 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATIONIDOWNGRAOING SCHEDU LE

4. PERFORMING ORGANIZATION REPORT NUMBERI4SI S. MONITORING ORGANIZATION AEPOR4T NUMBERIS)

6& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

Universitv of Southern'iaplcbe
ralifnrni Offico of ',aval "esearch

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. Stote and ZIP Code,

*Deoartrert of Engineering
Engineering-Svste's, S[L-300 1'D30 East 'Theen Street
Los I-ngeles, California £3r-7C asadena, Cali fnrnia !!CC-ntv25

So, NAME OF FUNOING/SPONSORING ~ 8b. OFPICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If appliale I

U'S Pmrn Fesearch Cf-fice I Di'f-i2C-33-K-O147
8.ADESS IXity, State and ZIP Coda, 10 SOURCE OF FUNDING NODS

US fr-," esearch C-f-ice PORM POET TS OKUI
2..Fc 2~1ELEMENT No NO. NO. NO.

Thsearch Triangle Park, !:C £7S_______________________
I I TITLE /Aciu~ae :jcuruty ClaaaIfication,

rrr-,, *I'PFI CT 111. [2F Prr, TH-FV mJ rT7i Tr j§ j DFSICPN 1 -rr~ (..?
12. PERSONAL AUTHORIS)

[lice C. rarker
13& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Y,. M~o.. Dovo71. PAGE COUNT

Final FROM 09/3 TO 09/ 6 06/ 2/24
6..,PLfi*MENTA Y.NOTATION

he view., opinions, and/or findings contained in this rencrt are 'hose o-f the authorls' and
sh uld not be corstrued as an official CDQart.-.at of the /.rrv nosition, rolicy, or decisior.

1,COSA TI -CO DES I. SUBJECT TERMS sContimme on 'veti ne ceuary and identify by block nIumboII

FI LD GRUP su.nPI hIesis, rnt~el.inn,, clockingi ha~duI are, orir'izati .ae
esti-atio,--:rng, Interconnect, enavior, daasructure,
desien autc'atior, cor"'uter aided dei4n.

19. ABSTRACT 'Continue on wuErrs*,f necessary and identify by block numnbotI

This final rer'ort describes research in hich-levcl synthesis, and an associated nrrtlo!",
area esti'iatior of *itearated circuits. The arroach tae Ist raefra oeso
the Proble'- beinq solved. Four rnaior research .results hlav2 teen -roduced. First, an
accurate techrin ue for estiration of intocrated circuit l:ivout area frrcr' cell infrm-.aior
has been develor ed. Second, ortiral clocking sc!-'er-e synthesis has been auto-ated.gThird, -r-nra'-s to design ninelined and rnni-elineo. data oaths have been develoed.
Fourth, register allocation 'of the data naths has also been Iautor'ated. In addition,
a representation cFr design inform~ation !.hich !,as '1roduced under a previous contract has
been used 'or a number of anr'lications..

This research fom~s nart of the ['.7X P~dvanced Design Auto'ation Systern under constructIon
at the University of Southern %IJifornia.

20DISTRIBSUTION/AVAILABILITY OABTCT21. ABSTRACT SECURITY CLASSIFICATION

INLA4FIED/UNLIMAITED C: SAME AS RPT. C OTIC USERS C:Uncl assi fied

22o. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

DO FORM 1473,83 APR EDITION4 OF I JAN713 IS OBSOLETE. U'ncl assi fied
SECURITY CLASSIFICATION OF THIS PAGE

Formal Models of Hardware

and Their Application to VLSI Design Automation

Final Report

Alice C. Parker

December, 1986

U.S. Army Research Office

Contract No. DAAG29-83-k-0147

Department of Electrical Engineering-Systems

University of Southern California

Los Angeles, CA 90089-0781

Approved for Public Release;

Distribution Unlimited.

The view, opinions, and/or findings contained in this report are those of the author(s)

and should not be construed as an official department of the army position, policy, or

decision, unless so designated by other documentation.

Table of Contents
1. ABSTRACT 1
2. INTRODUCTION 1
3. SUMMARY OF RESEARCH RESULTS 2

3.1. Area Estimation 2
3.2. Synthesis 5
3.3. Application of Design Representations 8

4. PERSONNEL SUPPORTED 9
References 10
I. A Guide to CSSP 12
II. Sehwa User's Manual
I1. MAHA User's Manual

IV. PLEST: An Area Estimator for Polycell Chips

/

I

1. ABSTRACT

This final report describes research in high-level synthesis, and an associated problem,

area estimation of integrated circuits. The approach taken is to create formal models of

the problems being solved. Four major research results have been produced. First, an

accurate technique for estimation of integrated circuit layout area from cell information

has been developed. Second, optimal clocking scheme synthesis has been automated.

Third, programs to design pipelined and non-pipelined data paths have been deveioped.

Fourth, register allocation of the data paths has also been automated. In addition, a

representation for design information which was produced under a previous contract has

been used for a number of applications.

This research forms part of the ADAM Advanced Design AutoMation system under

construction at the University of Southern California.

2. INTRODUCTION

The focus of the research described in this final report has been on synthesizing

hardware automatically from specifications of the required behavior. In order to

perform this synthesis task properly, estimates of the silicon chip area required must be

available. In addition, design data must be represented in a manner that can be

manipulated easily by the synthesis programs. The specific problems studied under this

contract include

1. techniques to perform area estimation from high level specifications,

2. methods to generate hardware automatically from behavioral specifications.
while meeting timing and cost constraints, and,

3. applying models for representing hardware to support synthesis and
verification.

The approaches to each of these problems, and results obtained, will now be described.

A list of publications and supported personnel follows the research summary. Finally,

program documentation for the synthesis and area estimation programs is contained in

the appendices.

2

This research forms part of the ADAM Advanced Design AutoMation system under

construction at the University of Southern California.

3. SUMMARY OF RESEARCH RESULTS

This section summarizes research in area estimation, synthesis, and application of

hardware representations.

3.1. Area Estimation

The area estimation research has three components:

" statistical estimations of the channel capacities of gate array layouts,

" estimating the area of standard cell layouts, and

* estimating the area and performance of pipelined data paths from the
behavior.

Gate-Array Area Estimation

The gate array wiring space estimation results allow us to estimate individual channel

capacities on a gate array chip. These estimates can then be used to choose actual

channel widths, and the probability of successfully routing these chips (routability) can

also be estimated. Also in [191 we provide mathematical models to obtain quantitative

measures for assessing the quality of the placement and routing solutions and estimating

these measures a priori.

A gate array chip is modeled as a two dimensional lattice of points with the number of

wires emerging from a point being a random variable following the Poisson distribution.

Wires at the intersection of a horizontal and vertical channel are classified as belonging

to one of six different types. The dimensions of the routing channel are defined as

functions of these random variables.

We present probabilistic models of routing on master slice ICs for estimating three

important measures of placement, namely, average wire lengths, wiring area, and

routability. In specific, we present simple and computationally efficient methods for

obtaining estimates of the dimensions of the individual routing channels. Additionally,

3

asymptotic properties of these estimates are discused.

Next, the relationship between wire length distributions and partitioning is addressed.

In particular we show that the empirical rule known as Rent's rule that characterizes

"well" partitioned layouts corresponds to a family of wire length distributions known as

the Weibul family. In fact any such relation, i.e. between the number of pins available

on a module and the number of circuits that can be placed on the module, completely

determines the distribution of wire lengths.

Finally, the question of routability is addressed. That is given a placement and the

amount of wiring space, we ask what percentage of connections can be successfully

completed at a given level of confidence. Since the dimensions of the routing channels

are random variables, routability is defined in terms of the distribution of these random

variables. Exact formulas for computing the routability of each channel are presented.

Additionally, asymptotic formulas (ie. as the chip size becomes large) for routability are

derived. Finally, computational results using the exact and asymtotic formulas for

chips of various sizes are presented. Some of these results have been published in [201,

[18].

Standard-Cell Area Estimation

Work has been completed oh area estimation of standard cell IC's [6], [5]. The main

focus is on establishing measures of net congestion in the intervening routing channels

between rolls of standard cells. A simple empirical model was developed for that

purpose. The model assumes the existence of relations between rows of standard cells as

partitions and the number of nets which connect them to other rows or pads. The

relations are similar in concept to Rent's rule. Experiments were done with the aim of

investigation the existence of such relations in actual layouts. Some empirical evidence

that such relations exist was found. Another problem researched is statistical modelling

of row sizes with the aim of estimating the size of the widest row, which, in turn

determines the width of a standard cell block. The method of row folding for

placement of standard cells is used to model the variation in total routing track demand

as the number of rows is increased and the aspect ratio is changed.

4

PLEST, a program for estimating the area of standard cell layouts has been written as

part of the more general ARREST area estimator. PLEST is based on a probabilistic

model for placement of logic. Given various design parameters, PLEST generates a

range of estimates for the possible shapes of the block layout. The program was applied

to a set of six layouts. The estimated chip area is, for all six chips, within 10% of the

measured area. Documentation for PLEST is attached and PLEST is available on tape.

Average wire length estimation is an important parameter in our estimation model. We

investigated the validity of Rent's rule for standard cell designs. We developed a

scheme for estimating the Rent parameters and for using Rent's rule to estimate the

average wire length. Comparison with real chip layout data will be the determining

factor in choosing the appropriate model for estimating the average wire length.

In the process of further validating and extending the standard cell area estimation

model we ran some test chip layouts on the MP2d layout system donated by RCA.

Higher-Level Estimation

We have investigated the area-speed tradeoffs exhibited by various RT-level constructs,

such as adders, multipliers and the like. Initial observations suggest that the area-speed

tradeoff curves tend to fit to curves of the type ATa=-k where A and T are area and

time of the construct, respectively, k is a constant and a is an exponent dependent on

the type of construct and its bit width.

We have investigated the possibility of estimating the cost/performance tradeoff curve

of pipelined designs from the behavioral description.

In [31 we give a model for predicting cost-speed tradeoffb for pipelined designs. The

model includes prediction of number of operators and registers from a behavior

specification. It has been verified through the designs generated by the automated

pipeline synthesis program Sehwa.

5

3.2. Synthesis

The synthesis work on this contract began with a study of the relationship between

synthesis and verification. Further synthesis research has involved clocking scheme

synthesis, pipelined and non-pipelined data path synthesis and register allocation [171.

A General Methodology

In [151 The general relationship between register-transfer synthesis and verification is

discussed and common mechanisms are shown to underline both tasks. The paper

proposes a framework for combined synthesis and verification of hardware iat supports

any combination of user-selectable synthesis techniques. The synthesis process can

begin with any degree of completion of a partial design, and verification of the partial

design can be achieved by completing its synthesis while subjecting it to constraints that

can be generated from a "template" and user constraints. The driving force was the

work done by Hafer [2] on a synthesis model. The model was augmented by adding

variables and constraints in order to verify interconnections. A multilevel,

multidimensional design representation [4, 11is introduced which is shown to to be

equivalent to Hafer's model. This equivalence relationship is exploited in deriving

constraints off the design representation. These constraints can be manipulated in a

variety of ways before being input to a linear program which completes the

synthesis/verification process. An example is presented in which verification and

synthesis occur simultaneously and the contribution of each automatically varies,

depending on the number of previous design decisions.

The software illustrates the combined and verification of register-transfer designs.

Mixed integer-linear constraints are derived from partial designs and then solved using

mathematical programming. The missing design information is synthesized and design

information already present is verified. This technique is facilitated by the chosen

representation of the design information, which has an equivalence relationship with the

mathematical program variables.

Clocking Scheme Synthesis

A theory of clocking was developed [8], [9], [13] and used as the basis for software which

automatically synthesizes clocking schemes. This software synthesizes clocking schemes,

given a partially complete register-transfer design. It determines the number and length

of clock phases, how pipelining is to occur, and how many registers (stage latches) are

required in the design in order for the clocking to work. The technique currently works

when there is no resource sharing during a major cycle of the clock, and is being

extended to exclude this limitation. The technique produces a 60% speed-up for a

Hewlett-Packard 21.LX computer when compared to the original design. The potential

for application of the clocking scheme synthesis to more general systems, including

systolic arrays, is also described, and an example given.

The algorithms and implementation for clocking scheme synthesis handle large

problems. Currently, optimal clocking scheme synthesis for designs with about 120

modules and 300 interconnection nets takes 15 CPU minutes on a VAX/750.

Minimization of the number of stage latches (in terms of total bitwidth) has been

studied. The complexity of this problem when no degradation in performance is

allowed is the same as that of the general assignment problem, and is NT-Complete.

Several good heuristic solution techniques are being developed and compared. The

program CSSP has been documented and is available on tape to the public for a

minimal handling fee of $30. including documentation. A copy of the user's guide is

attached.

A technique for automatic synthesis of clocking schemes for pipelined digital hardware

has also been developed [10], [91, [11]. Two steps in the synthesis process are considered:

the determination of number and location of pipeline partitions (stages) and the

insertion of delays in the pipe in order to achieve minimum throughput latency without

resource conflicts. We focus on a single reused resource in the same cycle, although

extension of the solution techniques to cover multiple reused resources is

straightforward.

Software exists to partition the system into stages subject to the number of stages or

the maximum stage time, and to insert delays into the pipeline.

The delay insertion algorithm has been proven to be optimal. Although the algorithm

performs exhaustive search, run times for large (20 stages) pipelines are less than a

minute on a VAX 11/750.

Pipelined Data Path Synthesis

Synthesis of pipelined data paths has been investigated [10], [9], [14] [12]. This synthesis

task involves the generation of data paths along with a clocking scheme which overlaps

execution of multiple computation tasks. A theory of general execution overlap has

been produced including four different scheduling techniques. We have produced a set

of techniques for the synthesis of pipelined data paths, and written Sehwa, a program

which performs such synthesis. The task includes the generation of data flow graph

along with a clocking scheme which overlaps execution of multiple tasks. Some

examples which Sehwa has designed are given in [3]. Sehwa can find the minimum cost

design, the highest performance design, and other designs between these two in the

design space. We believe Sehwa to be the first pipelined synthesis program published in

the open literature.

The theory and technique for pipeline synthesis have been extended so that conditional

branches can be handled. By handling conditionals, the technique can synthesize more

sophisticated pipelines which can execute more than one type of task. The technique

shares resources in an efficient manner, and thus produces cost-effective pipelines. This

makes it possible to use a single pipeline for multiple types of tasks instead of either a

complex reconfigurable pipeline or expensive multiple pipelines. This new extended

technique has been added to the existing pipeline synthesis program called "Sehwa".

Sehwa is written in franz LISP, and executes within minutes for problems of practical

size on a VAX 11/750. Documentation for Sehwa is also attached in the appendix, and

Sehwa is available on tape.

t8

Non-Pipelined Data Path Synthesis

A new RT-level non-pipelined datapath synthesis technique has been developed and

programmed in Franz Lisp [16]. and example datapaths synthesized. The program

(NLAIH-J) takes a data flow graph and a set of modules as input. The algorithm used is

based on a linear module assignment to critical path operations, followed by a cost-

based assignment using the concept of the "freedom". The freedom is a measure of

tightness of the time limit for the whole input data flow. Operations with the least

freedom are scheduled first. The program either minimizes cost subject to a time

constraint, or maximizes speed, subject to a cost constraint.

NL-AHA is written in Franz LISP, and rewritten in C, and executes within minutes for

problems of practical size on a VAX 11/750. NLMA-k documentation is attached, and

Mv!AHA is available on tape.

Register Allocation

The REAL REgister ALlocation program use a track assignment algorithm taken from

channel routing called the Left Edge algorithm. REAL is optimal for non-pipelined

designs with no conditional branches. It is thought that REAL is also optimal for

designs with conditional branches, pipelined or not. Experimental results are included

in [7], which illustrate the optimal solution found by REAL. REAL will be used to

process designs output from MAHA and Schwa. A summary of this research was

described in [17).

3.3. Application of Design Representations

A VLSI design representation called the Design Data structure (DDS) has been

developed at USC as part of the USC AD.M (Advanced Design AutoMation) project

[41, [1]. The data structure based on this representation is implementation-independent

and can be regarded as a general hardware design representation schema. It is

characterized by four nonisomorphic hierarchies, which collectively describe the system

under design. It has been used for a number of synthesis and analysis tasks including

Schwa and M1AFLA,. Its requirements are being analyzed to determine the design and/or

selection of appropriate user interfaces, including one or more hardware descriptive

languages.

.. .. . -.. i

9

A working prototype of a program called Catalog has been constructed. As a part of

the Advanced Design AutoMation (ADAM) system under development at USC, Catalog

provides a format for storing and a method of accessing information about cell libraries

and their contents using the DDS. Catalog provides a user-friendly interface between

the database and other programs and will include a goal-driven macro-cell constructor

called Librarian which combines cells from the selected library to form higher level

cells. At the top level, Catalog is capable of guiding the user in the selection of a

proper library. Catalog also provides detailed information concerning the data flow

behavior, logical structure, physical details, and timing of each cell in the catalog in a

format readable by a user or usable by a program. Work on Librarian and an interface

with an object-oriented semantic data base which has been constructed under a separate

contract is continuing.

4. PERSONNEL SUPPORTED

Alice C. Parker was supported as principal investigator 9/83 - 8/86.

Sarma Sastry was supported as a research assistant 9/83 - 12/84. Dr. Sastry was

awarded a Ph.D. degree Jan. 1985, and is an Assistant Professor at USC.

Fadi Kurdahi was supported as a research assistant 9/83 - 8/86. Mr. Kurdahi expects

to graduate June 1986.

Nohbyung Park was supported as a research assistant 9/83 - 12/85 and as a

Postdoctoral Research Associate 1/86 - 6/86. Dr. Park received his Ph.D. degree Dec.

1985, and is an Assistant Professor at University of California, Irvine.

David Knapp was supported as a research assistant 9/83 - 6/84. David Knapp received

his Ph.D. degree Dec. 1986, and is an Assistant Professor at the University of Illinois.

Jorge Pizarro was supported as a research assistant 1/86 - 6/86.

10

References

[1] Granacki, J.
Understanding Digital System Specifications Written in Natural Language.
PhD thesis, Dept. of Electrical Engineering - Systems, University of Southern

California, December, 1986.

[21 Hafer, L., and Parker, A.
A Formal Method for the Specification Analysis, and Design of Register-Transfer

Level Digital Logic.
IEEE Transactions on Computer-Aided Design CAD-2(1), January, 1983.

[3] Jain, R., Parker, A.C., and Park. N.
Predicting Area-Time Tradeoffs for Pipelined Design.
submitted to The 1987 Design Automation Conference.

[41 Knapp, D. and Parker, A.
A Unified Represention for Design Information.
In Proceedings of the IFIP Conference on Hardware Description Languages.

IFIP, August, 1985.

[5] Kurdahi, F. and Parker, A.
Area Estimation of Standard Cell Designs.
Technical Report DISC-84-2, CRI-85-05, EE-Systems Dept. USC, 1985.

[61 Kurdahi, F. and Parker, A.
PLEST: A Program for Area Estimation of VLSI Integrated Circuits.
In Proc. 23rd Design Automation Conf., pages 467-473. IEEE and ACM, June,

1986.

[71 Kurdahi, F., and Parker, A.
REAL: A Program for Register Allocation.
November, 1986.
Submitted to the 1987 Design Automation Conference.

[8] Park, N. and Parker, A.
Synthesis of Optimal Clocking Schemes for Digital Systems.
Technical Report DISC/84-1, Dept. of EE-Systems, University of Southern

California, May, 1984.

[9] Park, N.
Synthesis of High-Speed Digital Systems.
PhD thesis, Dept. of Electrical Engineering, University of Southern California.

September, 1985.

[10] Park, N. and Parker, A.
Synthesis of Optimal Pipeline Clocking Schemes.
Technical Report DISC/85-1, Dept. of EE-Systems, University of Southern

California, January, 1985.

• 11

[III Park, N. and Parker, A.C.
Synthesis of Optimal Clocking Schemes.
In Proceedings of the 22nd Design Automation Conference, pages 489-495.

IEEE and ACM, June, 1985.

[12] Park, N. and Parker, A.
Sehwa: A Program for Synthesis of Pipelines.
In Proc. 28rd Design Automation Conf., pages 454-460. IEEE and ACM, June,

1986.

[131 Park, N. and Parker, A.C.
Theory of Clocking for Maximum Execution Overlap of High-Speed Digital

Systems.
submitted to IEEE Transactions on Computers.

[14] Park, N. and Parker, A.C.
Sehwa: A Software Package for Synthesis of Pipelines from Behavioral

Specifications.
submitted to IEEE Transactions on Computer-Aided Design.

[15] Parker, A., Kurdahi, F. and Mlinar, M.
A General Methodology for Synthesis and Verification of Register Transfer

designs.
In Proceedings of the 21st Design Automation Conference. ACM SIGDA, IEEE

Computer Society, June, 1984.

[16] Parker, A.C., Pizarro, J. and Mlinar, M.
MAHA: A Program for Datapath Synthesis.
In Proc. 23rd Design Automation Conf., pages 461-466. IEEE and ACM, June,

1986.

[17] Parker, A.C., and Hayati, S.

Automating the VLSI Design Process.
gaccepted for publication in Proceedings of the IEEE.

[18] Sastry, S.
On the Relation between Wire Length Distributions and Placement of Logic on

Mlaster Slice ICs.
Technical Report. Digital Integrated Systems Center, Dept. of EE-Systems.

University of Southern California, October, 1983.

[19] Sastry, S.
Wireability Analysis of Integrated Circuits.
PhD thesis, University of Southern California. 1984.

[20] Sastry, S. and Parker, A. C.
On the relation between wire length distributions and placement of logic on

Master Slice ICs.
In Proceedings of the 21st Design Automation Conference. June, 1984.

Appendix A

A Guide To

CSSP

(Clocking Scheme Synthesis Package)

Version 2.1

By
Nohbyung Park

July 1986

Please direct inquiries to

Dr. Alice Parker
Department of Electrical Engineering - Systems

University of Southern California
Los Angeles, CA 90089-0781

Arpanet address : parker@usc-cse.usc.edu

CSSP Manual

Table of Contents
1. INTRODUCTION 2
2. INPUT FORMAT 2

2.1. Input File Format 2
2.1.1. Node-set List 3
2.1.2. Edge-set List 3

2.2. Pre-Placed Registers 4
2.3. Examples 5

3. BASIC OPERATIONS OF THE CSSP 7
4. GLOBAL ATOM VARIABLES 9
5. EXAMPLES 10
REFERENCES 15
APPENDIX 16

CSSP Manual i

List of Figures
Figure 2-1: Example 1I
Figure 2-2: Example 26

CSSP Manual

1. INTRODUCTION

This document contains a brief introduction to the CSSP (Clocking Scheme Synthesis

Package) which implements the clocking scheme synthesis algorithms developed by

Nohbyung Park [Park 84, Park 85a,b]. We assume that the readers are familiar with

the clocking scheme synthesis algorithms described in [Park 84. Park 85a~b].

Section 2 describes the input requirements of the system. Section 3 describes the

operations of major routines of the system and how to use them. In Section 4, the

global variables containing the current results of the clocking scheme synthesis and

critical path analysis are described. Section 5 shows several example runs of this

package.

2. INPUT FORMAT

The input to the CSSP consists of one or more directed acyclic graphs each of which

is a Microcycle Execution Graph. The description of the input MvEGs (Microcycle

Execution Graphs) to be analyzed must be stored in a file. The input file must contain

two lists, a node-set list and an edge-set list. Section 2.1 describes the formats for these

lists. In Section 2.3, the types and usage of the pre-placed registers are described. In

Section 2.3, two example of MEGs and their node and edge lists are given. Besides the

node and edge description, the user can specify the default delay times, Dss and Dsp

[Hafer 83], of the stage latches to be used. If not explicitly specified, they are set to zero.

2.1. Input File Format

An input file contains an ordered set of two LISP lists, <node-set> and <edge-set>.

flle ::= e-set> <edgp-set

Node-set contains the description of the functional modules in the input micro-cycle

graph(s). Edge-set contains the description of the interconnections between the nodes in

the input micro-cycle graph(s). If the input file format is not correct, the system will

ask for a new file name. Any file can be edited using the edit command (refer to Section

3).

CSSP Manual 3

2.1.1. Node-set List

Node-set is a list of node-description lists. A node description list consists of the name

of the corresponding functional module and its worst-case propagation delay. A node-set

must contain at least two nodes.

<irmmeI> :=a st-rng cf alphwnuric
::= c ::=nr

The nodename of each node must be unique and can be up to 80 characters long. mpd

is the worst case (longest) delay time of the corresponding functional module. mpd can

be zero if the node does not represent a real operational module (e.g. a dummy root

node).

2.1.2. Edge-set List

An edge-set is a list of edge-description lists. An edge description is a list of up to

seven-tuple of edge name, source node name, sink node name, bitwidth (bw), the

number of delay registers (dr), the number of bypass registers (br), and the number of

pre-placed stage latches (sl). The first four fields are mandatory. The types and usage

of the registers will be discussed in Section 2.2.

<edge-set' (<aWge {<edge>})

<edge1zzD> :=a stigo aI~N1umeric
<sqort>::= <nderam,>

:br> :I=,.teger

Edge names must be unique. Each edge must have one source and one sink node.

Therefore, a root node with zero mpd must be used for all the input edges, and a

CSSP Manual 4

terminal node with zero mpd for the output edges.

2.2. Pre-Placed Registers

Pre-palced registers are classified into three types:

1. Delay registers: registers which are used either to read or to write but not
to write and read during one micro cycle. Mostly used to synchronize
input/output data flow. These registers are carriers for values from
microcycle to microcycle.

Example: Registers in a systolic array which are clocked all at once.

2. Bypass registers: registers which are written and then read during one
micro cycle. These registers do not affect the stage partitioning except the
fact that each of them causes additional time delay equal to Dss + Dsp.

3. Pre-placed stage latches: registers which are pre-placed to force certain
edges to be included in a cutset.

If the corresponding fields of these registers in an edge description are unspecified they

are set to zero.

CSSP Manual 5

2.3. Examples

VS V7

vi va & v3500

2 152

20 (10

(A 10o) 027o) (V3 30) (Av15) 0y1s5) (vs 3D)
07 25) (VS W (V90) 1 v6o 00) N0)))

;Fge L2 x
(?A V2 15 0 0) . V2 35 0 0)

=y" v2 v4 5 0 0) M3 V2 v5 5 0 0)
(C'4 2 v6 5 0 0) TP v2 v12 4 0 0)

:C: v12 V3 2 0 0) (,,,u v12 v4 2 0 0)
M,, v1.2 V5 2 0 0) W-r v.12 v6 2 0 0)
(CS1 V3 ,V7 10 0 0) (CS, A v 4 0 0)
(CSz3 V5 v9 2 0 0) (CS,, 6 vi0 10 0 o)
MELT~n %0 %e 1 0 0) OE9,L ,,8 V9 17 0 0)
OJIFrn: vg vio 18 0 o))

Figure 2-1:] xample I

CSSP Manual 6

Y i +3 R5 +p4 + PQ

aC a ! a2 a3

3

A systolic array evaluating 3

Sy; ArTay foar:',.outim

nr&e 11Mt

(delt.l 3) (del=., 3) (delt.,S 3) (delt.,A 3)
(a= 7) (a=W 7 (aid 7

(eo deltal delt.a2 1 1 0) (el delta2 delta3 1 0 0)
(e2 delta3 delt 1 1 0) (e3 deltal Wa 1 1 0)
(e4 de.ta2 d: 1 00) (e5 de.ta3 a= 1 o0)
(eB e3.t 2ddI 1 0 0) (67 asl a= 1 1 0)

(eB add2 add3 1 1 0)
)

Figure 2-2: Example 2

CSSP Manual

3. BASIC OPERATIONS OF THE CSSP

The CSSP consists of four major procedures, init, kpart, opart and cp. These main

synthesis pr3cedures together with other utility routines are interfaced to a user through

a command line interpreter.

For more details of these procedures, the reader is urged to refer to the source code in

the Appendix.

init [filename]

This procedure initializes the CSSP with a new design to be analyzed. Filename is

the input file containing the description of the MEG(s) to be analyzed. This procedure

reads in the input graph and sets up necessary data structures. For the input file

format, refer to Section 2.

set

The user can set the register set-up time, Dss, and the propagation delay. Dsp. Default

values are zeros.

kpart [stage-time limit]

The procedure kpart partitions the MEG(s) into the minimum number of stages each

of which has stage propagation delay no longer than stage-time limit. The resulting

edge cutsets, the number of stages, and stage propagation delays are returned.

opart [k]

The procedure opart partitions the MEG(s) into exactly k partitions whenever it is

possible (there must be at least one directed path with more than k nodes with non-zero

propagation delays in the MEG(s)). If there are more than one such partitions, opart

chooses one with shortest maximum-stage-propagation-delay. The results returned are

the same as that of the kpart procedure.

cp

The procedure cp finds the critical path(s) in the MEG(s). The procedure cp uses

actual module propagation delays to compute the critical path delay. There can be more

than one critical path. The outputs from the procedure cp are lists of nodes and edges

on the critical paths and the lengths of the critical path(s).4
I

CSSP Manual

exam

User can access the values of the atoms that are global variables. Refer to Section 4

for the description of global atom variables.

edit [file name]

Edit a file using emacs.

load [file name]

Load a file.

exit

Exit from the CSSP. On exit. the system asks whether the user wants to analyze the

results. The analyzed results are written out to a file cssp.log.

CSSP Manual

4. GLOBAL ATOM VARIABLES

The global atom variables can be examined using the exam ,onrn):in :it iriy st:ge of

the execution of the CSSP. Especially, when there is run-timt- rror. vs. ''iriales can

be used to trace the cause of the error.

intervals A list of all the possible stage times. This is an enumuratlon)f the
longest path delays from each node to everv noide.

dss Set-up time of the stage latches.

dsp Propagation delay of the stage latches.

edgelist Edge-set list.

nodelist Node-set list.

numofnodes The number of nodes.

mpd A list of module propagation delays of the nodes.

numofedges The number of edges.

BWList A list of the bitwidth of the edges.

outvalues A list of output edges.

invalues A list of input edges.

Imax Current maximum stage-time limit.

k The number of stages as the result of the las t stage partitioning.

eh Current set of edges being traversed during stage partitioning.

nh Current set of nodes being visited during stage partitioning.

CSSP Manual 10

5. EXAMPLES

Example 1: The MEG of Figure I

-> (cssp)

Welcome to CMP!
Use <nit [filenriDM> a rzd to readt mia iar-aycle Unph(s).
Type <hei cr <hep Lnt far help.

CS> it exl

** MIE LM

CILE ME Isec>)

m 0 = (Vi 10)
m I = (2 70)
m 2 = NS 20)
m 3 = (v415)
m 4 = (v515)
m 5 (v6 20)
* 6 = (V7 25)
m 7 = (v865)
m 8= (v920)
m 9 = (viOtO)
ml0 = (v1215)

-011 ED Lmr -01

OZ WWM SRC SINK EW ER ER SQ

e 0 =(PAviv2 1500)
e 1 =CT1 v2v3500)
e 2 =CvF2v2v4500)
e 3 =Fv22v5500)
e 4 =CrF4v2v6500)
e 5 =ItPv2v12400)
e 6 =3C v12v3200)
e 7 =(A.Uv12v200)
e 8 =(Sv12v5 200)
e 9 =W3 Sv12"v6200)
e 10 =(CSI v3 v7 100 0)
e 11 =(C V4v840 0)
e12 =(CS3 v5 v9 200)

CSSP Mvanual 1

e 2 =(C34 v6 v1010 00)
e 14 =CM~ W v8 16 00)
el15 =TEULT v8 v9 17 00)
e 16 =JMr 1v9 vi0 16 00)

CSP set
E~q? 5
Dwp?10

CSS> kIzt 100

aitset 1 =(4 93 82 7 1 6)
cixtset 2 =(12 13 11 14)
citset 3 =(3 16)

-*m SKFl-HUCPAAEN-lIAY
stage-delay 1 -10
stage-delay 2 =Z
Stage-delay 3 -100
stage-dielay 4 --M

Total Prinsg T2m: 1 secrnds 32 (1/80 sec.)

CS)>cp

CQ~rICPLPAiNM
0 12 67 8 910

CPXIICAL PAIH EMES
0 56 10 14 15 16
Total Prccesi% TIm: 1 searmis M) (1Y8O sec.)

CSF cpat 3

Pmable Stage T~mes ane:
(85 95 100 1C 115 120 125 130 140 145 150 180 165 210 230 235)

Ekhtrkatwith stage tnD: 130 -> k = 2
Ebter cpaM 1th stage time: 105 -> k = 3
Ebtr paztwvith stage tIme: 95 -> k = 4
Ebter kpaM With stoge time: 100 -> k = 4

'Enter I1rt, witha stage tIne:"1 105

rtst 1 =(4 93 82 7 1 6)

CSSP Mlanual 12

oltset 2 =(12 13 11 14)

,jci*og Srj M-+F CPGVAT1jCEAY *401
stage-dea 1 =-100
stage-delay 2 =60
stage-delay 3 -105

Total PR-uces Tme: 1 secris 92 (1/60 sec.)

ckx= 105
Total. PRvcing TD.e: 11 seccnis 9 (1/60 sec.)

CS'> exit
oo yrx vant to analyze the results? y

*- Edge Oltsets*0
Stage 1: .4 Wr U3 M U2 AfM 9C
Stage 2: CMCS CM fUr

Stage Prpa;tfc Delays
Stage 1: 100
Stage 2: a
Stage 3: 106

Mnflxmn Cloc Period tcy) =10
mbker of Clo& Rases 04x.) =3
optiml Caoc Cycle:

When~ resync. rate)= 0.35: 1M.5
When resync. r-ate < 0. _5 :105

Example 2: The MEG of Figure 2.

-> (csp)

Wecu to CS!
t.be <mIrt alfJ.a] > cmurx1 to read 1n.Ld xz=.a-CyCle 92Pl (s).-
7yp ar cr-qw t>fcr hep.

CSI'> =it leis

OC WflE MFDr sw>

CSSP Manual 13

m 0 = (V1 3)
m 1 = (v23)
m 2 = (v33)
m 3 = (v43)
*n 4 = (v57)
* 5 = (v67)
m 6 - (v77)

-"i E17- LM7
MM** W5E Sr I. W ***R*1R S

e 0 =(eOv1v2110)
e 1 =(elv2v3100)
e 2 =(e02v3v4110)
e 3 =(e3vlV7110)
e 4 =(e4v2v6 100)
e 5 =(e5v3v5 100)
e 6 =(e6v4v5 100)
e 7 =(e7v5v6110)
e 8 =(ev6V7110)

aw> set
Dss? 5
Dsp? 5

CSP set
Dss? 1
Dsp? 1

CM'> kpazt 8

-mm~m EG-CJIM -mm"i
artset 1 =(4356)

-00 SDP-PXATMHJIILAY ~
stagp-e 1 =8
stagpde2 =8

Total Processrg Tme: 57 (1/1O sec.)

3S cpszt 2

Realizable Stage Tims are:
(811 14)

Ehter kprt withst% tim: 11 -> k 2

- - -- -- - - - - - - - -

CSSP Manual 14

Ebterkptrwithstagetm: 8 -> k= 2

'Tht r kzart with stage ti:" 8

cutset 1 =(4356)

-* SrAGE-FMpGATIN-£E.AY ***i*
stage-delay 1 =8
stage--delay 2 =8

Total Pocessing 1me: 43 (1/ao sec.)

dmx= 8
Total Prcesing Tm: 3 seans 1 (1/60 sec.)

CSE ed.t
Do y u wavt to -alyze the results? y

*** Eie 01wt ***

Stage 1: e4 e3 ee6

*** Stage Pf ei m Dea **

Stage 1: 8
Stae 2:8

Mnimm lck PezIo (tcy) = 8
NRber cif Coc Rmases Oax.) =2
Optial Clock Cycle = 8
BYE.

mht

CSSP Manual 15

REFERENCES

[Park 84] Park, N. and Parker, A.
Synthesis of Optimal Clocking Schemes for
Digital Systems.

Technical Report DISC/84-1, Dept. of EE-Systems
University of Southern California, May 1984.

[Park 85a] Park, N. and Parker, A.
Synthesis of Optimal Clocking Schemes.
In Proceedings of the 22nd Design Automation Conference
ACM and IEEE, June 1985.

[Park 85b] Park, N.
Synthesis of High-Speed Digital Systems.
PhD Thesis, Dept. of Electrical Engineering-Systems
University of Southern California, September 1985.

[Hafer 83] Hafer, L. and Parker, A.
A Formal Method for the Specification Analysis. and
Design of Register-Transfer Level Digital Logic.
IEEE Transactions on Computer-.ided Design, CAD-2(l),
January 1983.

[Leiserson 83] Leiserson. C. E., Rose, F. NI. and Saxe. J. B.
Optimizing Synchronous Circuitry by Retiming.
In Proceedings of Third Caltech Conference on lLSI
Computer Science Press. 1983.

()SSP Manual)

APPENDIX

cssP
Program Listings

Appendix II

Sehwa

USER'S MANUAL

A Pipeline Synthesis Program

The ADAIM - Advanced Design AutoMation Project

University of Southern California

by

Rajiv Jain

Please direct inquiries to:

Dr Alice Parker, Department of Electrical Engineering - Systems, University of Southern California, Los
Angeles, CA 90089-0781. Arpanet address . parker@isc -cse. use. edu

2

INTRODUCTION

Sehwa is a program which synthesizes pipelined data paths from an input

dataflow graph. Sehwa performs allocation of functional modules and scheduling of

resources. Sehwa estimates the cost of registers and interconnects, but does not perform

the detailed allocation of these elements.

Sehwa is general purpose, in that it can take into account data dependencies.

conditional branching in the input specification and the resynchronization rate due to

exceptions. Sehwa finds the fastest design, the cheapest design and a range of optimal

designs in between these two extremes.

Sehwa was written in Franz LISP by Dr. Nohbyung Park as a part of his Ph.D.

dissertation [1]. It runs on a Sun workstation as well as Vax 11/750.

This document is Sehwa user's manual. It is not intended to be a treatise on

pipelined synthesis ([1 is a good reference for this). It is assumed that the user knows

the capabilities of the program. It is also assumed that the user has experience of work-

ing on the BSD Unix operating system and an editor. Although the understanding of

this document does not require it, the user is cautioned that the use of Sehwa requires

the abovementioned skills. The document is divided into three sections : data prepera-

tion, how to run Sehwa and finally an example with results.

DATA PREPERATION

The input to Sehwa is a data flow graph in Park Normal Form [1]. PNF has a

LISP like structure and consists of two lists : the node list and the edge list. They are

(nodes (node- ldescription) (node- 2_description) .. (noden.description))

3

(edges (edge 1-description) (edge- 2_description) .. (edgen.description))

The bold words are terminal and the words in italics are non-terminals.

The node description is specified as follows :

node-name node-type bit-width

where, node-name is the instantiation of the node, node-type is the operation per-

formed by the node and biLwidth is the number of bits (in integer) handled by the

node. An example of node list is

(nodes (al add 16) (ml mutt 16)).

The edges are similarly specified as :

edge-name source-node destination-node bitwidth value-name

where, edge-name is the name of the edge, sourcenode is the node it starts from (if

the edge is an input edge from external the source-node is root), destination-node is

the node the edge connects to (in the case of the edge carrying a value external to the

data flow graph the destination-node is outport) and value-name is the value carried

by the edge. The valuename is especially useful where two (or more) edges emanating

from the same node carry the same value. An example edge list is

(edges (el root al 16 x) (e2 al ml 16 e2) (e3 ml outport 16 y)).

For conditional branching Sehwa has two reserved words dist and join. A node

is specified as one of these as

(node-name dist)

(node-name join).

Each dist node must pair up with a join node in the dataflow graph.

A complete list of reserved words recognized by Sehwa in the input file is

nodes, edges, root, outport , dist and, join.

4

-- U-

USING Sehwa

Having prepared the input file containing the data flow graph in PNF, we now,

describe the use of Sehwa. As Sehwa is written in LISP, the user has to first enter the

LISP environment by typing

lisp

The next step is to load the file contaning Sehwa source code and invoke it. This is

achieved through

[load 'Sehwa]

[Sehwa]

Note the quote before Sehwa in the first command and the upper case S. On invoca-

tion, Sehwa will prompt for the input file and then for the information about the set of

modules used for implementing the nodes. The module information is specified as

module-name operation bit...width area delay

where, module-name is the name of the module, operation is the function performed by

the node, and delay is the module delay (it has to be an integer). An example of an 8

bit carry save adder description is

csadder add 8 0.5 30

Sehwa then prompts the user for latch information. The latch information is re-

quired to determine stage delays and in making estimate of register costs. The following

information is requested by Sehwa

- Setup time of the latch

- Propagation time through the latch, and

- Area per bit of the latch.

A carriage return is impiicit after each command.

5

Sehwa then proceeds to compute the boundary design points. At this point

Sehwa has all the information and the user can now proceed to get results by specifying

his cost/speed constraint. The constraint is specified by typing in order

cost (or) speed

constraint value

resynchronization value.

To exit the program type exit. Sehwa will then save the previous constraint results in a

file sehwa.log and exit to the LISP environment.

Known bugs : There are situations which the user may come across while executing

Sehwa and due to the lack of suitable title they have been called bugs. These are :

I. At some point before the main synthesis loop, the user might wish to exit Sehwa. The

only effective way of doing that is by typing ^C (control-C) and going to the LISP en-

vironment. There is no graceful way of doing this.

2. When Sehwa prompts for the first time for module descriptions, the program goes

into an infinite loop if the user types a carriage return only. The user then has to type

^C to break the infinite loop.

EXAMPLE and RESULTS

An example dataflow graph using conditional branches is shown in Fig. 1. The

input file in PNF and a sample run for the same is included. User typed words are

underlined. The results give a detailed account of the scheduling of operations, the

number of resources required, the latency, an estimated cost of registers and the total

estimated cost of the design. There can be situations in conditional branching when two

operations are scheduled in the same time step to the same module. In this situation the

6

operation nodes which are designated for the same resource are clustered together in an-

gular brackets in the output.

REFERENCE

1. N. Park, "Synthesis of High-Speed Digital Systems", Technical Report CRI-85-23.

Computer Research Institute, University of Southern California.

----- ----- ---- - - ------ ----------

nl +2 n2 +1 -1 n3

M DID4 n7

n 2 3 G 2+4 -4 nl

D2 n8 MO J4 18

M3g E+ap5 Data -5 Graph

(nodes
(nJ. add 16)
(n2 add 16)
(n3 sub 16)
(n4 dist)
(n5 sub 16)
(n6 dist)
(n7 dist)
(n8 dist)

*(n9 add 16)
(nlO sub 16)
(nil sub 16)
(n12 add 16)
(n13 add 16)
(n14 sub 16)
(n15 add 16)
(n16 j oin)
(n17 join)

*(n18 j oin)
(n19 sub 16)
(n20 j oin)
(n21 add 16)
(n22 dist)
(n23 sub 16)
(n24 add 16)
(n25 j oin)

(edges
(vi root ni 16 vi)
(v2 root ni 16 v2)
(v3 root n5 16 v2)
(v4 root n2 16 v4)
(v5 root n2 16 v5)
(v6 root niO 16 v6)
(v7 root n12 15 v7)
(v8 root n3 16 v8)
(v9 root n3 16 v9)
(via ni n21 16 vlO)
(vii nl n13 16 vl1)
(v12 n2 n4 16 v12)
(v13 n3 n7 16 v13)
(v14 n4 n5 16 v14)
(v15 n4 n6 16 v15)
(v16 root nil 16 v7)
(v17 n7 n12 16 v17)
(v18 n7 nil 16 v18)
(v19 n5 n8 16 v19)
(v20 root n9 16 via)
(v21 n6 n9 16 v21)
(v22 n6 niO 16 v22)
(v23 n8 n13 16 v23)
(v24 n8 n14 16 v24)
(v25 root n14 16 v25)
(v26 n9 n17 16 n26)
(v27 nlO n15 16 v27)
(v28 root n15 16 v28)
(v29 n12 ni8 16 v29)
(v30 nil ni8 16 v30)

Fv3 OF 161 v1

(v32 n13 n16 16 v32)
(v32 n14 n16 16 v33)
(v33 n15 n17 16 v33)
(v35 n18 n22 16 v34)
(v36 n16 n29 16 v35)
(v36 root n19 16 v36)
(v37 root n19 16 v3)
(v38 n19 n21 16 v39)
(v39 n20 n22 16 v39)
(v41 n21 n22or 16 v4)
(v42 n22 n23or 16 v42)
(v42 n22 n24 16 v42)
(v44 n22 n24 16 v43)
(v44 n23 n25 16 v45)
(v46 n25 n25or 16 v4)
(v467 2 rotpo23 16 v4)
(v47 root n23 16 v47)
(v8ro)2 6v4

rajiv[l] >i_s
Franz Lisp, opus 38.79
-> [load 'Sehwa)
[loadehwTia.1]
t
-> [Sehwal

U U SSS CCC SSS EEEEE H H W W A
U U S S C C S S E H H W W AA
U U S C S E H H W W A A
U U SSS C == SSS EEEEE HHHHH W W A A
U U S C S E H H WWWAAAAA
U U S S C C S S E H H WWW A A
UUU SSS CCC SSS EEEEE H H W W A A

WELCOME TO USC-SEHWA PIPELINE SYNTHESIS PACKAGE!

USC Design Automation Group
Nohbyung Park

PHASE 1

Input Processing and
Data Structure Initialization

Input Data-Flow Graph (File Name)? pk.l

Global buffer matrices allocated..

Data flow graph translated..

PHASE 2

Module Selection and
Synthesis

Global data structure being constructed

* WELCOME TO MODULE-SELECTION PHASE

Do you want instructions (y/n)? y

<INSTRUCTION FOR MODULE SELECTION>

This is an interactive and iterative module-selection

routine. Type-in a module-description list for each
function whose name will be printed one by one.

MODULE DESCRIPTION FORMAT:
<module> ::- ((module name><operation><bitwidth><cost><delaytime>)

Each module name must be unique among module names.
The bitwidth and module delay time (nsec) are positive
integers and the cost is a positive real number.

Exl: csadder8 add 8 0.5 30 -- An 8-bit carry-save adder

Ex2: T174284 mul 4 2.0 60 -- TI 4-bit binary multiplier

Type carriage-return (CR) to continue ...

*** Function List ***
(function (op-node indices))

0 (add (14 12 10 8 7 4 1 0))
1 (sub (2 3 5 6 9 11 13))

For each function, type a module description list.
(Type carriage-return (CR) to skip for no change.)

> Function: add
Total number of nodes: 8
Max. number of possible evaluations: 6
Previous Assignment: None
(New) Module Description? a add 16 4200 340

> Function: sub
Total number of nodes: 7
Max. number of possible evaluations: 5
Previous Assignment: None
(New) Module Description? s sub 16 4200 340

Module Selection is complete!
Do you want any change (y/n)? n

Stage Latch Information:
Dss (set-up time in nsec.) ? 11
Dsp (propagation time in nsec.) ? 5
Unit cost (per bit) ?15.624

Computing All Possible Stage Times

Design-space boundaries computation started

* Design-Space Boundary Information *

>> Fastest Design:

Nodes-to-stages Assignment:
Stage 0: 0(nl) l(n2) 2(n3) 15(n4) 16(n6)

17(n7)
Stage 1: 3(n5) 4(n9) 5(nlO) 6(nll) 7(n12)

18(n8) 22(nl8)
Stage 2: 8(nl3) 9(n14) 10(n15) 20(n16) 21(n17)
Stage 3: 11(n19) 19(n22) 23(n20)
Stage 4: 12(n21) 13(n23) 14(n24) 24(n25)

Clock Cycle (initiation interval): 356
Stage Time (minor clock cycle): 356
Latency: 1

Effective Initiation Interval: 356
Resynchronization rate: 0 %

Total Cost: 77467.82399999999
Module cost: 63000
of modules:

a: 8
s: 7

Latch cost : 14467.824
Scheduling Algorithm Used: Forward-Maximum-Scheduling

>> Cheapest design:

Nodes-to-stages Assignment:
Stage 0: 18(n8) < 5(nlO) 3(n5) > 16(n6) 15(n4) l(n2)
Stage 1: 17(n7) 2(n3) 0(nl)
Stage 2: 22(n18) 6(nll) 7(n12)
Stage 3: 19(n22) 23(n20) 20(n16) < 9(n14) 1l(n19) > 21(n17)

< 8(n13) 4(n9) 10(n15) >
Stage 4: 24(n25) 13(n23) 14(n24)
Stage 5: 12(n21)Clock Cycle (initiation interval): 4176
Stage Time (minor clock cycle): 696
Latency: 6

Effective Initiation Interval: 4176
Resynchronization rate: 0 %

Total Cost: 25852.008
Module cost: 8400
of modules:

a: 1
s: 1

Latch cost : 17452.008
Scheduling Algorithm Used: Forward-Feasible-Scheduling

>> Absolute Boundaries:

Absolute Minimum Cost: 25852.008

Absolute Minimum Initiation Interval: 356

* WELCOME!! to Main Synthesis Loop *

Select Optimization Mode (cost/speed/exit)? cost

Maximum Allowable Cost? 50000

Expected Resynchronization Rate (in %)? 0

Design in progress with:
Latency: 1
of modules: (6 5)
Stage times: (356 696 1036 1376 1716)

> Tentative Solutions Found

Nodes-to-stages Assignment:
Stage 0: 17(n7) 0(nl) 2(n3) 16(n6) 15(n4)

l(n2)
Stage 1: 22(n18) 18(n8) 6(nll) 7(n12) < 3(n5) 5(n10) >
Stage 2: 21(nl7) < 8(n13) 4(n9) 10(nl5) >
Stage 3: 19(n22) 23(n20) 20(n16) < 1l(n19) 9(n14) >
Stage 4: 24(n25) 12(n21) 13(n23) 14(n24)

Clock Cycle (initiation interval): 356
Stage Time (minor clock cycle): 356
Latency: 1

Effective Initiation Interval: 356
Resynchronization rate: 0 %

Total Cost: 61417.776
Module cost: 46200
of modules:

a: 6
s: 5

Latch cost : 15217.776
Scheduling Algorithm Used: Forward-Feasible-Scheduling

Design in progress with:
Latency: 2
of modules: (3 3)
Stage times: (356 696 1036 1376 1716)

> Tentative Solutions Found

Nodes-to-stages Assignment:
Stage 0: l(n2) 2(n3) 15(n4) 17(n7) 16(n6)

0(nl) 7(n12) < 3(n5) 5(nlO) >
Stage 1: 18(n8) 6(nll) < 4(n9) 8(n13) 10(n15) > 22(n18) < ll(nl9) 9(n14) >

21(n17) 20(n16) 23(n20) 19(n22) 14(n24)
13(n23) 12(n21) 24(n25)

Clock Cycle (initiation interval): 2072
Stage Time (minor clock cycle): 1036
Latency: 2

Effective Initiation Interval: 2072

A -- -~

Resynchronization rate: 0 %
Total Cost: 32683.896

Module cost: 25200
of modules:

a: 3
s: 3

Latch cost : 7483.896000000001
Scheduling Algorithm Used: Backward-Feasible-Scheduling

*** SOLUTION ***

Nodes-to-stages Assignment:
Stage 0: 17(n7) 0(nl) 2(n3) 16(n6) 15(n4)

l(n2)
Stage 1: 22(n18) 18(n8) 6(nll) 7(n12) < 5(nlO) 3(n5) >
Stage 2: 20(n16) 21(n17) < 8(n13) 4(n9) 10(nl5) > 9(n14)
Stage 3: 19(n22) 23(n20) l1(n19)
Stage 4: 13(n23)
Stage 5: 24(n25) 14(n24) 12(n21)

Clock Cycle (initiation interval): 712
Stage Time (minor clock cycle): 356
Latency: 2

Effective Initiation Interval: 712
Resynchronization rate: 0 %

Total Cost: 41167.728
Module cost: 25200
of modules:

a: 3
s: 3

Latch cost : 15967.728
Scheduling Algorithm Used: Forward-Feasible-Scheduling

* Second Alternative:

Nodes-to-stages Assignment:
Stage 0: 22(n18) 7(n12) 6(nll) 18(n8) 17(n7)

< 3(n5) 5(nlO) > 0tnl) 2(n3) 16(n6) 15(n4)
l(n2)

Stage 1: 19(n22) 23(n20) 20(n16) < 1l(n19) 9(n14) > 21(n17)
< 8(n13) 4(n9) 10(n15) >

Stage 2: 24(n25) 12(n21) 13(n23) 14(n24)
Clock Cycle (initiation interval): 696

Stage Time (minor clock cycle): 696
Latency: 1

Effective Initiation Interval: 696
Resynchronization rate: 0 %

Total Cost: 54933.816
Module cost: 46200
* of modules:

a: 6
s: 5

Latch cost : 8733.816000000001
Scheduling Algorithm Used: Forward-Feasible-Scheduling

Select Optimization Mode (cost/speed/exit)' exit
Solution List is written out to <sehwa.log>.

* 0 0 ** 0 0 *

* * OR *

Bye
t
-> D
Go5o~ye

Appendix mH

MAHA

USER'S MANUAL

A Datapath Synthesis Program

The ADAM - Advanced Design AutoMation Project

University of Southern California

by

Mitchell Mlinar

Please direct, inquiries to:

Dr. Alice Parker, Department of Electrical Engineering - Systems, University of Southern California. Los
Angeles, CA 90089-0781. Arpanet address :parker icysc --rse. use. edu.

Table of Contents

1. Introduction 1
2. MAHA 2

2.1 Introduction 2
2.2 NLAH-- Inputs 2

2.2.1 Node Description 4
2.2.2 Edge Description -1
2.2.3 Module Description

2.3 Running NLk-A 6
2.3.1 MA-HA Automatic Operation S
2.3.2 NIAH Manual Operation 9

2.3.2.1 Manual Partitioning 9
2.3.2.2 Manual Clock-cycle Entry 10

2.4 NLA-k Output 11
2.5 An Example i1

3. Converting to PNF from a VT description 24

3.1 VT Pre-processor: vt-pre.out 24
3.2 VT Translator: vtran.l 24
3.3 Extracting the PNF datafiles: makpnf.l 27
3.4 LISP-to-C L-A converter: cnvrtm.l 2S

4. File Formats 29
4.1 Dataflow description file: C 29

4.1.1 Node Description 2)
4.1.2 Edge Description 30

4.2 Dataflow description file: LISP 30
4.2.1 Node list description 31
4.2.2 Edge list description 32

4.3 Module description file: C 33
4.4 Module description file: LISP 33

IW

1. Introduction

The A.D.A\I system at the University of Southern California has as a goal the

fabrication of" hardware from a high-level description. One portion of that system

includes d: t . h svnthesis. MAHA is a non-pipelined datapath synthesis program

which takes ,ts input a dataflow graph description. This graph is derived from the

DDS (Desi_, I:ita Structure) which is at the heart of the .kD.\l system.

This man ,cscribes MAI1A as well as a number of utilities which generate input

data files C " MAHA. One set of utilities converts from a VT (Value-Trace)

description P'NF (Park Normal Form) - the data structure used by the M.AHA

program. .',A.-iher set of utilities convert from the older LISP-format PNT data

structures to '',, current text format used by the C version of M.AHA.

2. MAHA

This section details the use of the NLA-Lk prograT- Items which will be discussed

include the input data structures to MAHA. running MAHA, and the output file

which may be generated by MAHA.

2.1 Introduction

MAFHA is a program which takes as an input a dataflow graph. module library. and

global constraints and outputs the allocation data which includes the timing. bindings.

and cost of the synthesis. MAHA can work with the PNF description directly.

although it can also work with any properly conditioned VT description.

Getting to PNF from a VT description is discussed in the next chapter. A detailed

description (.f C functions and the internal data structure of MALA are presented in

Appendix I.

2.2 NAHA Inputs

Although .\IIA relies on an interactive environment to control program flow, the

dataflow gr:tIt cannot be entered at runtime. Two data input files are required by

MAHA: a ,ow description and a module library. The dataflow description consists

of a single fI h% which contains both a list of nodes and a list of edges: the module library

consists of ir .. iles and their associated cost. speed. and bit-width. Although both the

dataflow ile alm library file may be named in any manner of your choosing, it is

recommended that the primary names be identical while changing the extension to

indicate the type of file. For example. the dataflow might be contained in garbage.dfg

and the modi'.ic library in gyLrbage.lib.

The dataf' ' description file contains the description of a complete dataflow graph.

The graph 1, -: number of restrictions on it:

* The g ,h can contain no more than 1000 nodes or ?00 edges.

" The gr i must be acyclic (no loops).

" The t, p or the graph is 'Indicated by the reserved word root which cannot
be deFined elsewhere. Root has NO input edges, only output edges. If you
do not have a root node, MNAHA will add one for you along with the
necessary edges to it. If you have a root node. it shoul 'be of type dummy
since it does not physically represent any operation.

" The buttoni of' the graph is indicated by the reserved word outport and
cannot be dlefined elsewhere. Outport has NO output edges. only input
edg-es. If y-ou do not have a outport node. MAH-A will add one for you
along with the necessary edges to it. If you have a outport node, it should
be of t% VPe dllmmyao.

* Conditionial branches are 'indicated by the reserved words dist for fork
(distrilutlin nodes and join for join nodes. Dist has one 'input arc and one
or marv(output arcs: join is the converse.

" Farall':1 Iramnches are indlicated by the reserved words parbeg where the
paralll krancheis begin and parend where the parallel branches recombine.

" In the o;:Le of multi ple output edges from a ivnnode. MAI-A will attempt
to t re:i t thle m azs parallel b~ranches with an iminplied parbeg. The implied
parend f,)r tlis _roup 'is at outport.

The da d''uc.script ioni file h.L hob th ii rade and~ edi e infr tinin a one nodJe

ledge) per li:io f'rniat :t.F- ws

nod-descr,' cai-l

nde-desui p=x-2

rode-desw--pti=x-n

edgedesctptlai-m

Note the blank line between the node and edge de-scriptions:. this is a

REQUIREM L NT.

4

2.2.1 Node Description

A node description contains the node name, node type. and bitwidth as follows:

Nd-name vsan 15 character name which Is urzique to the dataflow graph. The

node-type is also a name of up to 15- characters whlich specifies the function of the node:

this node-type %It T match one or more module functions. Bitwidth is a positivE

integer from 0 to whatever: a hitwidth of 0 informs NMAHA that this node is an

irripled node (e.g. one that has no a-ssociated cost or delay'). For example.

add add 8

names an addler addi which performs an add function and is of bitwidth 8. There must

be at least one add In the module libLrary. N'eep in mnind that case is important: hence.

aIdd and Add are NOT the samne.

A brief example of of' some valid nodle names are shown below.

4Clp 1 bit-Pea 1
heLlo d-flop 140

m ~too sub 5
yt~x-anr-f:Le Cdzy 0
PDPM r.Les ar 2
Al~ce a-p 2

2.2.2 Edge Description

An edlye wr 1 1P*1)11 follows the niode description Ini a dataiflrle with an Inte, venilm

blank line. It consists of a source nole, des tination node. and litwidth.

Like the node description. sourre-node and iestiflulion-noIe are names up to 15

characters iim length. The node namies MUST match niames previously included in the

node description.

An example of edge descriptions using previously listed node names are shown below.

5

hello me 8
hello Alice 16
Alice yai7- reid 16
ADW rules me to 16

2.2.3 Module Description

The second input data file is the module library which consists of a list of individual

functional modules and some of their physical parameters. The form of the module

library is:

rdule-desipt~ai-1

.. ,............

r=ule-descr-1pt1cn-p

Each module-description is of the form:

imdule-n"e izdule-functlo blt-wldth prop-delay ct

.fodule-name is a name of up to 15 characters which is unique to the module library.

.\fodule-function is also a name of up to 15 characters and describes the general

function of the module. Some typical general functions are add. sub, or. and, and

d-flop. The node-type of every node description IUST match the module-function of

one or more modules. Bit-wvidth, prop-delay, and cost are integer values which

describe the bit width of the module. propagation delay in some arbitrary units, and

cost (usually area. although could be power. etc.) in some arbitrary units.

When read into MAHA, the module library is reduced to a list which is linked to the

node list. Specifically, for each node-type named in the node list. the module library is

scanned as follows:

1. If the node-type and module-function are the same. proceed to step 2. else
proceed to step 7.

2. If the module bit-width is less than or equal to zero, proceed to step 3, else
proceed to step 5.

3. If the module bit-width is zero, the actual cost and prop-delay are defined as
the module cost times the node bit-width and module prop-delay times the
node bit-width, respectively. Proceed to step 6.

4. If the module bit-uidth is less than zero. the actual cost is the module cost
times the node bit-width whereas the prop-delay is simply the module
prop-delay (no adjustment). Proceed to step 6.

5. If the module bit-uidth is less than the node bit-tvidth. proceed to step 7.

6. The cost and prop-delay information is added to the matching module list.

7. If there are more modules to check, proceed to step 1. else proceed to step 8.

8. An average module is created which has as its prop-delay (cost) the average
of all prop-delays (costs) from the matching module list.

A pass over the module library is made for each node to create the aUerage module

which implements each node function. If two nodes generate the same matching

module list. they will point to the same auerage module.

Since an acerage module is used by MAHA. a module library should contain identical

functions with different prop-delays. costs, and bit-widths. If you wish to have direct

control over the module library, then only a single ompatible module should be

included in the library for each node.

2.3 Running MAHA

This version of \L-IL-k is written in C. To execite .LAJL-k. type
maha. ct

Once L-L-k begins execution, it first inquires for the name of the dataflow

description ile.
Dt f1C flenam?

After you enter the name of your file. MAHA readF the node and edge list and

attaches root and outport nodes if missing. Next. MALHA prompts for the module

library.

Module ibrwy f1len ?

After the module library filename is entered, MAHA generates the average module

library as described in the previous section. At this time. you are prompted for a

number of self-explanatory items.

Echo to cirqm.t file? (Y/N):

Print the noe list? CY/AO:

Print the edg list? CO/ :

Print the mo.ule lbrazry (Y/10:

For the first of the above inquiries. MAHA will prompt for a filename if you choose

to echo the output to a file. Echoing is similiar to a script file as all console output is

also directed to the specified file.

MAHA now calculates the critical path and lists the nodes in it, the total critical

path time. and the minimum clock cycle time. (Critical path is the longest delay path

from root to outport. Only a single critical path is returned even if there is more

than one critical path.)

You are now asked for constraints which direct the search for a solution.

Ehte mtom t,1. (0 to searrh):

ater maximin cost (0 to search):

There are three choices you have regarding the constraints assigned:

1. You can specify time (some positive integer) and set cost to 0 (to search).
MAIHA will search for the cheapest design which meets the time constraint.

2. You can specify cost (some positive integer) and time to 0 (to search).
MAfIA will search for the fastest design which meets the cost constraint.

3. You can specify BOTH cost and speed. MAHA ,%ill find the best design
that meets both constraints. Due to the way MAHA functions, it will
produce the fastest design that meets both of the constraints.

Notice that the case where BOTH maximum time and cost are set to zero (search) is

NOT currently allowed. M AA will print a message and ask for the time and cost

again.

i8

Do ycu wish to manua ly contml the sear? (YI/N):

The first big decision point has arrived. Normally, you will want the MAHA algorithm

to find the result for you: in this case, answer N to the above question. If, for some

reason, you wish to bypass the MAHA search algorithm, answer Y to the question.

Since MAR{A acts differently dependent on the answer, manual and automatic

search are discussed separately.

2.3.1 MA.HA Automatic Operation

When you specify automatic operation. MAHA will automatically se-rch for the best

result. However. MAHA can give a range of results

D yrx just want the final result? (Y/N):

If you answer N. MAHA will give a table of results IGNORING the constraints.

However. MAHA will stop when a solution is reached. Answering Y will not give the

intermediate solution table. but executes faster since MARA restarts allocation (at a

higher partition count) when the cost (time) is exceeded rather than completing a "bad"

allocation. The user can direct MAHA to reduce its execution time further.

Ferfam b= ASAP (earliest) and ALAP Qatest) al.Jcdml? (YIN):

MAHA has the capability to perform allocation in "as early as possible" or "as late as

possible" and take the best of the two results. However, this could result in an

execution time which is three times longer than just ASAP (default) allocation. When

you first enter a graph or have a very large graph. it is recommended that you answer

N. However, for small graphs, you may wish to try both despite the longer execution

time. In this case, answer Y.

MAFA has the option to show all of its internal operation.

R= freedcis and sta= (detailed infam O? CO'AO:

If you answer Y to the above question, the "grundgy" detail of MARA operation is

shown: bounding the time range to search, buying and sharing of modules, current cost,

and percent completion. If you wish to avoid this gory detail, enter N at the question.

MA.A pauses after allocating the to give the current cost. It then continues with

off- allocation in the forward (ASAP) direction. MAHA also allocates in the reverse

(.-AL.AP) direction if instructed and takes the best of the two results.

2.3.2 MAHA Manual Operation

If manual search has been specified. the user directs all operations.

Eatr. pm-rtitdm caan (positve ,

or clock cycle tme (as neg.ve #),
cr It.R- to exd.t:

Manual control of MAHA allows either directly specifying the number of partitions

(time slots) to cut the dataflow graph or entering the clock cycle time. (To distinguish

a partition count from a clock cycle time. the former is entered as a negative number.)

A distinct feature of manual control of MAMA is that you are allowed to

exceed the original constraints. MAHA will inquire whether to proceed when this

happens.

2.3.2.1 Manual Partitioning

MALTA will partition a dataflow graph between I and n partitions. where n is the

number of partitions realized when using the mainimum clock cycle time discussed

earlier. If the number of partitions is within this range, MAHA inquires

Pefn tcrt ASAP (earLest) and PLAP Qatet) ala2ct? (Y110:

MA11A has the capability to perform allocation in "as early as possible" or "as late as

possible" and take the best of the two results. However. this could result in an

execution time which is three times longer than just ASAP (default) allocation. When

you first enter a graph or have a very large graph, it is recommended that you answer

N.. However. for small graphs, you may wish to try both. In this case, answer Y.

MA.HA has the option to show all of its internal operation.

S frveu aw 2nd sta= (detailed infarmat1c? CYRM:

-! .q . • 1

10

If you answer Y to the above question, the "grundgy" detail of MALA operation is

shown: bounding the time range to search. buying and sharing of modules, current cost.

and percent completion. If you wish to avoid this gory detail, enter N at the question.

MAHA pauses after allocating the to give the current cost. It then continues with

off- allocation in the forward (ASAP) direction. MA.HA also allocates in the reverse

(ALAP) direction if instructed and takes the best of the two results.

2.3.2.2 Manual Clock-cycle Entry

MAHA will partition a dataflow graph based on a preset clock cycle time. The only

restriction is that the time must equal or exceed the minimum clock cycle time

discussed earlier. If the clock cycle time is within this range, MAHA inquires

Pfcrm bth ASAP (earliest) and ALAP a~att) allcar.1 ? (YA):

MAHA has the capability to perform allocation in "as early as possible" or "as late as

possible" and take the best of the two results. However, this could result in an

execution time which is three times longer than just AS.-P {default) allocation. When

you first enter a graph or have a very large graph. it is recommended that you answer

N. However. for small graphs. you may wish to try both. In this case, answer Y.

MARTA has the option to show all of its internal operation.

am freedmis and staws (detailed :famtzn)? (Y/N):

If you answer Y to the above question, the "grundgy" detail of MAFHA operation is

shown: bounding the time range to search, buying and sharing of modules, current cost.

and percent completion. If you wish to avoid this gory detail, enter N at the question.

MA.HA pauses after allocating the to give the current, cost. It then continues with

off- allocation in the forward (ASAP) direction. MAHA also allocates in the reverse

(ALAP) direction if instructed and takes the best of the two results.

11

2.4 MAHA Output

Once MAHA has completed allocation of the graph, it displays the final clock cycle

time. cost, and total time for the graph.

&h the hbwaz-e map? 'YA:

If you wish to see the final allocated results, answer Y to the question. MAHA will

output a table that looks like

HARNE.Sr
adcl3 afl.000 add5. 001
r--swtfiO diLvl. ooi

a add3.001

The first column contains the list of all hardware purchased, only the function is

actually listed. (Notice there is one r-.shiftlO and two add8s in the example.) At the

columns to the right of the hardware is the list of all nodes which are bound to that

piece of hardware and the time slot associated with it.

In the example. addi in the first partition (slot #0) and add5 in the second partition

(slot #1) share the same hardware - add8. Add3 and dit'1 were put into the second

partition (slot #1) and do not share their hardware with any other operators.

2.5 An Example

In this section. the example that was included in the NAHA paper. "M .AHA: .A

Datapath Synthesis Program" by Alice Parker. .Jorge Pizarro. and Mitchell Nflinar.

ACM/IEEE 23rd Design Automation Conference. June. 1986. The dataflow graph used

in this example is reproduced below.

12

toot

6
add I

addS e I add2 W4

t13 add3

*12

e I

divI subi

e14
e17

div2

els CRP3

D7 e28 D6

e29 eI8

e16
sub3 sub2

e19 e20 e22

cupi cop2

ed'4

DS
e2l

e." 5 26 andl

t23
invI out2

27 out3

Outl

Dataflow Graph Example

13

Each node is assigned a distinct name (not to exceed 15 characters) for use by

MA.HA. Below is a copy of the dataflow graph file. example.dfg, which is accessible

from the maha directory.

Since the paper was written, there have been some minor changes to MAIA -

namely, the separation of conditional and parallel branches. The example dataflow

graph in the paper has unconditional branches.

14

00t dtrzuy 0
axIt= dimy 0

ad1 add 9
ad3 add 10
add4 aWi 9
ad5 acid 8
subl sub 9
su2 s&b 8
sub3 sub 8
dlvi r-shlt 10
dlv2 r-shlft 10
anp cip 8
arwp aTp 8
aip3 arp 8
arxil andi 2
aInv1 Inv 1
cuti buf 1
cut2 bf 1
cut3 buf 1
D5 parbeg 0
£6 parbeg 0
J5 pmm~d0
J56 paz-eix 0

1 oo addl 8
rt aid5 8
100, adi 8
i co add4 8
ruc add2 8
i co adi4 8
rt~ add3 8
root ad!5 8
adl a d 9

adc2 ad310
add3 dil 10
add4 subi 9
adcL subi 9
dlvl div2 9

13

dtv2 D6 8
£6 sub3 8

D sb2 8
sub3 arpl 8
su2 arp2 8
acp2 andl 1
~ar3wl1

andl u 3 1
CMP D6 1
D5 ImrI 1
D6 =2t I
Invi out51 1
£6url .1

liwi J5t 1

= J51
=~3 X 1

Notice how the above example follows the rules outlined previously.

* there is a single root node which starts the dataflow graph

* there is a single outport node which ends the dataflow graph

" the dummy-type nodes have a bitwidth of 0. Sinc.e the root and outport
nodes are algorithmic conveniences, a bitwidth of 0 informs MAHA to
ignore and cost and delay for this node.

" there is a blank line between the node list and the edge list

The associated module library for this dataflow graph. exrample.lib, is reproduced

below:

16

dMEY tM 00 0
pmte pater 0 0 0
Fwwd 1uzud 00 0
a= ad 2 40 80
add4 add 4 72 120
add8 add 8 120 180
addl2 add 12 150 223

add16 add 16 200 300
ddn add 0 20 45

sub sub 2 50 90
sub4 sub 4 84 130
sub8 sub 8 140 200
subl2 sub 12 Z5 250
subl6 sub 16 240 390
sutn sub 0 25 50
mf12 mil 2 80 140
ml4 ml. 4 150 300
mulS mul 8 280 640
=2 mix 2 30 56

m=x4 m=x 4 54 100
arp4 arp 4 70 110
=pB czp 8 13) 180

12 azp 12 19D 240
latchl latch 1 30 6
latch4 latch 4 120 250
latchS latch 8 240 EO)
latchn latch 0 3) 66
an2 and 2 10 18
and3 and 3 14 22
r-shlftn r-shift 0 44 88
r-shift4 r-shlft 4 44 250
r-shlftS r-shlft 8 44 400
r-shift2 r-shlft 12 44 510
r-shlftl6 r-sbift 16 44 600
l-shfUi 1-sh=t 0 44 88
l-shift8 1-shft 8 44 400
1-shif=l6 1-shIft 16 44 600
InvI inv 1 8 14
tnv2 Inv 1 8 25
bufl buf 1 10 14
buf2buf 130100
buf3 buf 1 50 150

The sample module library points out some of the features and restrictions described

earlier:

17

* Each module has a unique name.

" The set of module operations is well defined: addition. subtract. multiply,
emp (compare), and, buffer driver. inv'erter. -shift (left shift register).
r-shift (right shift register/divider), distribute, and join.

" Even fictitious node operations such as parbeg, dummy. and parend MUST
be declared in the module library. (Other ftictitious nodes include dist and
join. but are not used in this example.)

* All of the delay and cost values are positive integers (including zero).

Here is a sample run of MAHA using the example.

I

Mqik V5,01

Mlitchelj. Mlnar, Cctd~er l1e

Paading in the nodellst.
There ame 24 nodes: roots = 1, aitports =1

Paadng in edgelist.
TIhee aim M edges.
Chedclng far exm edges recJr .
-> 0 ~a edges aded.

Trhere are 13 rrxiles, ininun possible tine Is 230.
In~put prooess tine: 0. 18 seamds.

Echo to utput, f Ile? (Y/N) n

Print the nodie List? (Y/N): n

Print the edge list ? COAO: n

Print the nrmuLe library7 (Y44): y

19

Mdule nam WI= elay Cost
duum'O 0 0 0
a8 157 25
addg 9 176 308
addl0 10 183 M
subg 9 230 363
sub 8 201 302
r-shlftlO 10 176 63

p8 8 10 210
2 12 20

invi 1 8 19
buf' 11 30 8B

rpzteO 0 0 0
F&-rErX 0 0 0

Preo to ot~nue -

Notice how MAHA calculates the auerage of the module library. Each node in the

dataflow will have a single module associated with it (but not alloacted yet).

Finding the critlJ. p=h.

The critical path has 13 rodes with a t1w of 1271.
The mnii= caoxk tIm is 230.

tt.lcal p= praxss tm: 0.020 sectords.

The critil pth Is:

Orotadd1 add addI3

dlvl dtv2 I6 su2
rp2 andl cu~t3

c"Itprt

E]iter adnn t ime (0 to search):

Now that the critical path has been found, we can try to perfhrrm the ';vnthes i with :1

cost constraint.

&~ter umamn tim (0 to seardi): 0

Ehter rmdm a=t (0 to seardO: 30

QxnLints:

Dc yc wish to munially amtm-o the search" C(',N:n

AutcZat.c searchj..

Pexfrm both ASAP (earLiest) arnd AAP Catest) a2~xX lx7 (YNV: y

Ptltas Cckc 'e cost
1 1271 i271 4%
2 892 1-4 3449
3 516 1548 4475
4 377 1M 3' 10
5 362 1780 4475
6 m i9% 312
7 23 :6:0 3604

Ir Best is tIm cf 10, clck of 377, as of 3'-C6

Analysis tim: 0.390 searids

Falia. the bwt case au"~n the hardwr m!p' CY/V, y

21

~af1i add3.X03

__b sub2.002

a"9 adi5.000

Since the c-,st ntrat a. never miet, the 1ol ution with the lowest cost was selected.

Oh, iuslv. theraph 1, t~x t ,htlv it rained, so a higher cost will be attempted. (Of

.')iir~e. in t hi, inmple ,vaiiiplo, tho ImIs)hviouis. In ,t targe exampte. the -,olkaon
T 13 % I h e I ' s iv f eeI

'2 2

Ehter maxli= t.Un (0 to search): 0

Eht m. cot (0 to search): 4000

srants:
Tim: minze OC,: 400

Do yu wish to mnually antrol the search? (YN): n

AutmaIc search ...

prf~cim both ASAP (earliest) and ALAP (Oat) aJlcatim? CY/N): n

Sha fredcm and stams (detailed inffmnatai)? Cf/A: n

larttlas C1ck TIM Om

1 1271 1271 4885
2 692 13B4 3449
3 516 1548 4475
4 377 1508 3105
5 m2 1780 4475
6 333 19M 3812
7 230 1610 3504

Best is time cf 13B4, clkc f 692, c , c 3449

Analysis time: 0.080 secids.

Recalaflate the best ¢e am the hardware ap? (fY/t: y

.. _ d a _

23

adBa = .XZ add5.001
add9 aid.00 aZ40

add1O ad3.000
Pr-sihf1O dIvl.000 dIv2.001

subB su2.001

buf 1 cut3.c0l.
subB sub3.001

arF8 CzP1.X01
Inv1 invl.col

1uf cut2.001
subg subl.001

CMF8 aip3.001

Bye.

Although the LOWVEST cost is for -1 partitions, the object was to minimize time while

meeting the cost constraint. Note that nodes with no cost associated with them are not

listed in the hard ware map.

2-

3. Converting to PNF from a VT description

Converting a complete VT (Value-Trace) description for a datapath into PNF (Park

Normal Form) needed by MAIA is a four step process requiring the following

programs:

vt-pre.out The VT pre-processor
vtran.l The VT translator
makpnf.l The PNF extracter
cnvrtm.1 The LISP-to-C data translator

3.1 VT Pre-processor: vt-pre.out

The VT pre-processor merely reads in the original VT dsecription and writes out an

easily LISP readable VT description. Vt-pre.out removes all of the unnecessary

declarations and inserts field delimiters if they do not currently exist (as astericks). To

execute the pre-processor. enter:

vt-pn.c 1nt-Vr-des4) p-c savr-descrIptIM

where input-IT-description and processed-IT-descripti,)n are the input and output

filenames, respectively. For example. a,,ssunie that you wish to synthesize a datapath for

t 181.ibrn. You would type:

vt-pm.a= vU.81.tn vtl8l.pe

The pre-processed VT description would be written to rt , 1.vr.'.

3.2 VT Translator: vtran.!

The VT translator consists of a ingle LIsPi module ,:alled vtran.l. This can be

loaded by typing:

liVM

Once the load is complete, the translator can be executed by typing:

(GD)

pon execution, the VT translator prints a sign-on message and asks for the name of

25

the input file. This would normally be the output from the VT pre-processor.

vt-pre.out:

fl.t Me? vtl8l.pre

Next, the VT translator inquires for any starting list. For extremely complex VT

descriptions, it is wise to break the VT up into several smaller files. Since the

translation process is not quick. you could incrementally translate the pieces and quit

after each one saving the intermediate results. (You can always do a large VT as a

single module. However, since humans have explicit needs such as food, water, and

sleep and generally like to be aware of a problem in a program today rather than

sometime next week, you are forewarned.) For this example, there is no starting list:

Any star-tang lst? n

At this point, the VTs are processed one at a time showing the translation as it

proceeds. The sequential translation has exception handling for four special cases:

C.ALL. ETER. RESTA-RT. and LEAVE. When a ('ALL occurs, the current translated

VT list is examined for the presence of the named VT operator. If the VT body h3-,

been translated, the VT body i, substituted for the call (flattening of the hierarchy) and

the translation continues. However. if the VT hody ha not been encountered, the

translation of the current VT is aborted and the program proceeds to the next VT ill

the input file. Although this method means that a multi-pass approach may be

necessary to generate a complete translation. there is much less overhead involved

(which is often critical in LISP).

The EATER instruction is treated identical to a CALL instruction in this version of

vtran.l.

The LE.4AVE instruction is only accepted at the end of a VT in this version of vtran.l.

Hence, any internal LEAVEs. regardless of whether they leave the current VT or

another VT. must be removed. If a VT has outputs any values required by other VTs.

a LE.4VE with the appropriate values must be the last VT-body statement.

26

Once the first pass through the VT is complete, the program checks if all VT bodies

have been translated. If not, another pass is made through the file; however, all VT

bodies which have been previously translated are skipped. The translator will continue

to make passes through the file until no more VTs can be resolved or the translation is

complete. If the translation is complete, completion status is displayed.

wLa.a1i prcess aplete: xxx Vr odes translated

If the translation process could not complete, a message like:

rar.Im process suspended: xxx Vr bodies tansLa3
yyy i'rolved Vr boies

After printing the pertinent message, the translator asks if you would like to process

any other files. Note that the results of the new file are incrementally added to the

current description: if you want to translate a completely unrelated VT, you must stop

the program and start over.

Ary mar files? n

Since the translation is being stopped (it does not matter whether the translation is

omplete). the program inquires:

Ouptflen'me? vtl81.trn

'rhe translator will write the translatted portions ,df the VT description oit to the name I

file and exit.

If the translation is complete, you ,'an prwee to gernerate the PF dtara list.- ivia

makpnf.I discussed next). Otherwise. vtran.l will have to be executed using it S1.1.trn

as the starting list and one or more files co ntaininK the remainder of the \T: a. the

input file(s).

-dW

27

3.3 Extracting the PNF datafiles: makpnf.I

Once the VT translator has successfully terminated, the desired VT can be extracted

from the translation file. To load the extracter, type:

lisp maqff

Once the load is complete. you can execute the program by typing:

(CD

After printing the signon message, the extracter will inquire for the file which was

generated by the translator:

File genered by VMA? vt181.trn

After reading the translated VT descriptions, the VT body to be extracted is entered:

Vr boy to owt to BF? ?

Since remembering (or even knowing) the names of all VT bodies is, at best, ridiculous.

entering a question mark instructs the extracter to list the names of VTs in this file.

LAMt of 'r boies availL-ble:

v181 v1E4 v1W v113

You have chosen to synthesize what your filename indicates is the "big cheese", so you

enter:

Vr bod'y to overt to *.. v ISI

After selecting the VT body to extract, enter the nodelist and edgelist filenames you

wish to generate:

Nx ist file to cr.te? vtlSl.nod

ellst file to create? vtlSI.edg

The files output by makpnf.I, vtl8l.nod and utl81.edg, are written in LISP format as

early versions of MAHA were composed in LISP. These files need to be converted to

the C text format before executing the C version of MAHA.

28

3.4 LISP-to-C MARA converter: cnvrtm.I

Cnvrtm.I is a LISP program which converts from the early nodelist and edgelist

descriptions in LISP format to a single dataflow graph in C. The reverse conversion

from C to LISP data files is not supported. To load the conversion program, type

lisp c wr

Once loading has completed. the program is executed with

(G)

Upon execution. cnvrtm.I prints a signon message and inquires for the names of the

LISP format nodelist and edgelist files (generated by makpnf.).

LISP fcrmat r1e1lst1 fMenm? vtl81.nod

LISP1 fcn=a edg fll erm? vt181.edg

Once the lists are read. cnvrtm.I inquires for the output filename.

aam um ztp flliame? vtl~l.dfg

The dataflow graph vtlSldfg is written and cnvrtm.I exits. After construction of a

compatible module library (say. utl8l.ib), you have the two input data files necessary

for executing NAHA.

29

4. File Formats

Included here is a brief summary of all file formats, some of which are used by the C

version of MALHA and others which are used by LISP utilities.

4.1 Dataflow description file: C

The dataflow description file has both node and edge information in a one node

(edge) per line format as follows:

e-ds1ptr-

node-des=Vtin2
.,.............

edge-des=47LAI-l
edge-des=-VpUm-2

Note the blank line between the node and edge descriptions; this is a

REQUIREM[ENT.

4.1.1 Node Description

A node description contains the node name, node type, and bitwidth as follows:

node-mm node-type b~lud-h

Node-name is any 15 character name which is unique to the dataflow graph. The

node-type is also a name of up to 15 characters which specifies the function of the node:

this node-type MUST match one or more module funct*ons. Bitwidth is a positive

integer from 0 to whatever; a bitwidth of 0 informs MAHA that this node is an

implied node (e.g. one that has no associated cost or delay). For example,

aldi add 8

names an adder addi which performs an add function and is of bitwidth 8. There must

be at least one add in the module library. Keep in mind that case is important, hence,

add and Add are NOT the same.

30

A brief example of of some valid node names are shown below.

c3 dW 1
xi_.pl bit-rew 1
hello d-fl 140
me adl 6
me too sub 5
ya-9-flred dth 0
A116M rules cr 2
Alice crp 2

4.1.2 Edge Description

An edge description follows the node description in a dataflow file witih an intervening

blank line. It consists of a source node, destination node, and bitwidth.

sore-oe destulnatl-node bitwl=

Like the node description, source-node and destination-node are names up to 15

characters in length. The node names MUST match names previously included in the

node description.

An example of edge descriptions using previously listed node names are shown below.

hello me 8
hello Alice 16
Alie yal-are-flre 16
ADW rules me too 16

4.2 Dataflow description file: LISP

The LISP dataflow graph is similiar to the C version with some additions necessary

for LISP and interchangability with SEI-VA and CSSP. The dataflow graph file

consists of a LISP node list followed by a LISP edge list.

:31

UCedge-demrl==7)

(..................)
ede-dslaip O))

Each type will be described next.

4.2.1 Node list description

The node description is a LISP list of the form:

cn,:e-desipti.m-1 r e-descrlptdm-2 re-desap -n)

where node-description-i is a list of the form:

(rd e-n o de-fDict1i bit-idth)

where node-name is any node-list unique character trin-, froim I to 31 characters arn

the first character is a letter (a-z). rzode-funr tz)on is the 'tincti Pn f the node r:ctr

string from I to 31 characters) and should bI e trtn .istent f,,r :ill n,,les. ,oniv in n Ii

functions are: add. sub. dic. m ul, u-flpp. an, ,4 , ro j.. T,, ;l r,, ,riut n i ,h-

function name is that it %IR*ST match at lu:Lt ,,ne f'unctiii in the :n-ilil rar.

Bit-tvidth is an integer from () to whatever and *olAfne.- th.iIlfiltli inii V. iit %%., iAt I

for this function.

The only characters which may cornprise a charat,r -t ri i bh, i:it:ifl, %% ,,-c.,';j

are the letters (A-Z. a-z. 0-9. - int _ . .ep in min) .:i , :-. , i l rt:wi

,adtd and Add are NOT the same. .Xiso., "k). .!ni .i - -1 t-11 ' -

lets-go get a six-pack may be cute. but they j(o take up erfu ,r e in I Ii Lll

A brief example of a node list is shown below.

32

((c3 dmmy 1)

(m ad 8)

(m W Sb 5)
(YLt-re-flre tnW 0)
CAD nies cr2)
L(ooesAice ap 2))

4.2.2 Edge list description

.-An edge descriptin is a LISP list of the form:

(edgdesaiptir- 1 edg-esalptiam-2 ... epscptlar

. [%here .d g-,ie.sr' pt i s a list of the form:

(V-m sane-rce dest_ ratcl-de bit-widt. ed~ge-nrme)

Shere ,',t.,-, , r in' y he-list unique character string from 1 to 31 characters and

" lr, r ft ,'iara,'tr i,- a letter !:-z). .- oure-node and Istination-node are the source

•1 ' :t -t I'fl:~, I !he rectedt arc. Both node names MUST match names used

!: i. jet, l,t -ripTin. Not only is it unwise. unfair, and immoral to use a name

in ,t r , ih, ' l>, t. the utilities using the file will not work if there is no match.

t viiit- h 1,th i> aliit t,,er from 1 to whatever and deFines the minimum bit width needed

f r this :re'.

J-Idt,-i tin,, i, repeated at the end for compatibility with some other portions of the

\I).\ s sterm.I

A brief example cf an edge list is shown below.

((el v24 _1 xl_pl 1 el)
(e2 c& x_p1 1 e2
(ez XI_.pl x2_pl I z

(V24_12 Y3 pl 6 =
(w*L-u p tiUM 2 WW-p)
(sf ymn 1h watl did y yzkwae 4 912Msyalr)

33

4.3 Module description file: C

The module library data file consists of a list of individual fun ti,,nil in, i,i- ii,

some of their physical parameters. The form of the module Jibrary is:

.....mdue-descriptiai-p

Each module-description is of the form:

=nue-nan =u1e-f'.mcr.ct bt-width p-deiay o

\,dule-narne is a name of up to 15 characters which is unique to the module library.

\!,,,ule-function is also a name of up to 15 characters and describes the general

n io~ <Of the module. Some typical general functions are add, sub, or, and. and

:-f,,j. The node-type of every node description MUST match the module-function of

r more modules. Bit-uidth, prop-delay, and cost are integer values which

i t , hit width of the module, propagation delay in some arbitrary units. :ani

--i'Wlr e,a. although could be power. etc.) in some arbitrary units.

,:-. it,) MAHA. the module library is reduced to a list which is linked to the

1 4 Module description file: LISP

:-Pi r , -tru,'ture for the module library is nearly identical to the C version

.,, ,n)I the addition of parentheses.

mo-- . e-C-r4-a1r-2 .. m.u.e-des ptmn

.., "- .ri-/ is of the form :

.rir.,IPtM(e--f'z'rpt inf r delay e eta)

: i "r., IF-scription for a description of each of the subparts.

IV'. 1I[.FS': An Area I-4-t arriatnr f,,r I',I c rI I hi;.

Ai i,- ., .-i

., • . .

• : ir'.-r i;.'-a'- ,

:m.-sX' "" I -". . *'~r

| ':' * *- *' t-
m*|

* . ri .

i,. 9

* &,.

DAT

FILMEI

17001

